pydantic_ai.builtin_tools
BUILTIN_TOOL_TYPES
module-attribute
BUILTIN_TOOL_TYPES: dict[str, type[AbstractBuiltinTool]] = (
{}
)
Registry of all builtin tool types, keyed by their kind string.
This dict is populated automatically via __init_subclass__ when tool classes are defined.
ImageAspectRatio
module-attribute
ImageAspectRatio = Literal[
"21:9",
"16:9",
"4:3",
"3:2",
"1:1",
"9:16",
"3:4",
"2:3",
"5:4",
"4:5",
]
Supported aspect ratios for image generation tools.
AbstractBuiltinTool
dataclass
Bases: ABC
A builtin tool that can be used by an agent.
This class is abstract and cannot be instantiated directly.
The builtin tools are passed to the model as part of the ModelRequestParameters.
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | |
kind
class-attribute
instance-attribute
kind: str = 'unknown_builtin_tool'
Built-in tool identifier, this should be available on all built-in tools as a discriminator.
unique_id
property
unique_id: str
A unique identifier for the builtin tool.
If multiple instances of the same builtin tool can be passed to the model, subclasses should override this property to allow them to be distinguished.
label
property
label: str
Human-readable label for UI display.
Subclasses should override this to provide a meaningful label.
WebSearchTool
dataclass
Bases: AbstractBuiltinTool
A builtin tool that allows your agent to search the web for information.
The parameters that PydanticAI passes depend on the model, as some parameters may not be supported by certain models.
Supported by:
- Anthropic
- OpenAI Responses
- Groq
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | |
search_context_size
class-attribute
instance-attribute
search_context_size: Literal["low", "medium", "high"] = (
"medium"
)
The search_context_size parameter controls how much context is retrieved from the web to help the tool formulate a response.
Supported by:
- OpenAI Responses
user_location
class-attribute
instance-attribute
user_location: WebSearchUserLocation | None = None
The user_location parameter allows you to localize search results based on a user's location.
Supported by:
- Anthropic
- OpenAI Responses
blocked_domains
class-attribute
instance-attribute
If provided, these domains will never appear in results.
With Anthropic, you can only use one of blocked_domains or allowed_domains, not both.
Supported by:
allowed_domains
class-attribute
instance-attribute
If provided, only these domains will be included in results.
With Anthropic, you can only use one of blocked_domains or allowed_domains, not both.
Supported by:
max_uses
class-attribute
instance-attribute
max_uses: int | None = None
If provided, the tool will stop searching the web after the given number of uses.
Supported by:
- Anthropic
WebSearchUserLocation
Bases: TypedDict
Allows you to localize search results based on a user's location.
Supported by:
- Anthropic
- OpenAI Responses
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | |
country
instance-attribute
country: str
The country where the user is located. For OpenAI, this must be a 2-letter country code (e.g., 'US', 'GB').
CodeExecutionTool
dataclass
Bases: AbstractBuiltinTool
A builtin tool that allows your agent to execute code.
Supported by:
- Anthropic
- OpenAI Responses
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
174 175 176 177 178 179 180 181 182 183 184 185 186 | |
WebFetchTool
dataclass
Bases: AbstractBuiltinTool
Allows your agent to access contents from URLs.
The parameters that PydanticAI passes depend on the model, as some parameters may not be supported by certain models.
Supported by:
- Anthropic
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | |
max_uses
class-attribute
instance-attribute
max_uses: int | None = None
If provided, the tool will stop fetching URLs after the given number of uses.
Supported by:
- Anthropic
allowed_domains
class-attribute
instance-attribute
If provided, only these domains will be fetched.
With Anthropic, you can only use one of blocked_domains or allowed_domains, not both.
Supported by:
blocked_domains
class-attribute
instance-attribute
If provided, these domains will never be fetched.
With Anthropic, you can only use one of blocked_domains or allowed_domains, not both.
Supported by:
enable_citations
class-attribute
instance-attribute
enable_citations: bool = False
If True, enables citations for fetched content.
Supported by:
- Anthropic
max_content_tokens
class-attribute
instance-attribute
max_content_tokens: int | None = None
Maximum content length in tokens for fetched content.
Supported by:
- Anthropic
UrlContextTool
dataclass
deprecated
Bases: WebFetchTool
Deprecated
Use WebFetchTool instead.
Deprecated alias for WebFetchTool. Use WebFetchTool instead.
Overrides kind to 'url_context' so old serialized payloads with {"kind": "url_context", ...} can be deserialized to UrlContextTool for backward compatibility.
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
249 250 251 252 253 254 255 256 257 258 259 | |
kind
class-attribute
instance-attribute
kind: str = 'url_context'
The kind of tool (deprecated value for backward compatibility).
ImageGenerationTool
dataclass
Bases: AbstractBuiltinTool
A builtin tool that allows your agent to generate images.
Supported by:
- OpenAI Responses
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | |
background
class-attribute
instance-attribute
background: Literal["transparent", "opaque", "auto"] = (
"auto"
)
Background type for the generated image.
Supported by:
- OpenAI Responses. 'transparent' is only supported for 'png' and 'webp' output formats.
input_fidelity
class-attribute
instance-attribute
input_fidelity: Literal['high', 'low'] | None = None
Control how much effort the model will exert to match the style and features, especially facial features, of input images.
Supported by:
- OpenAI Responses. Default: 'low'.
moderation
class-attribute
instance-attribute
moderation: Literal['auto', 'low'] = 'auto'
Moderation level for the generated image.
Supported by:
- OpenAI Responses
output_compression
class-attribute
instance-attribute
output_compression: int | None = None
Compression level for the output image.
Supported by:
- OpenAI Responses. Only supported for 'jpeg' and 'webp' output formats. Default: 100.
- Google (Vertex AI only). Only supported for 'jpeg' output format. Default: 75.
Setting this will default
output_formatto 'jpeg' if not specified.
output_format
class-attribute
instance-attribute
output_format: Literal['png', 'webp', 'jpeg'] | None = None
The output format of the generated image.
Supported by:
- OpenAI Responses. Default: 'png'.
- Google (Vertex AI only). Default: 'png', or 'jpeg' if
output_compressionis set.
partial_images
class-attribute
instance-attribute
partial_images: int = 0
Number of partial images to generate in streaming mode.
Supported by:
- OpenAI Responses. Supports 0 to 3.
quality
class-attribute
instance-attribute
quality: Literal['low', 'medium', 'high', 'auto'] = 'auto'
The quality of the generated image.
Supported by:
- OpenAI Responses
size
class-attribute
instance-attribute
size: (
Literal[
"auto",
"1024x1024",
"1024x1536",
"1536x1024",
"1K",
"2K",
"4K",
]
| None
) = None
The size of the generated image.
- OpenAI Responses: 'auto' (default: model selects the size based on the prompt), '1024x1024', '1024x1536', '1536x1024'
- Google (Gemini 3 Pro Image and later): '1K' (default), '2K', '4K'
aspect_ratio
class-attribute
instance-attribute
aspect_ratio: ImageAspectRatio | None = None
The aspect ratio to use for generated images.
Supported by:
- Google image-generation models (Gemini)
- OpenAI Responses (maps '1:1', '2:3', and '3:2' to supported sizes)
MemoryTool
dataclass
Bases: AbstractBuiltinTool
A builtin tool that allows your agent to use memory.
Supported by:
- Anthropic
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
354 355 356 357 358 359 360 361 362 363 364 | |
MCPServerTool
dataclass
Bases: AbstractBuiltinTool
A builtin tool that allows your agent to use MCP servers.
Supported by:
- OpenAI Responses
- Anthropic
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | |
url
instance-attribute
url: str
The URL of the MCP server to use.
For OpenAI Responses, it is possible to use connector_id by providing it as x-openai-connector:<connector_id>.
authorization_token
class-attribute
instance-attribute
authorization_token: str | None = None
Authorization header to use when making requests to the MCP server.
Supported by:
- OpenAI Responses
- Anthropic
description
class-attribute
instance-attribute
description: str | None = None
A description of the MCP server.
Supported by:
- OpenAI Responses
allowed_tools
class-attribute
instance-attribute
A list of tools that the MCP server can use.
Supported by:
- OpenAI Responses
- Anthropic
FileSearchTool
dataclass
Bases: AbstractBuiltinTool
A builtin tool that allows your agent to search through uploaded files using vector search.
This tool provides a fully managed Retrieval-Augmented Generation (RAG) system that handles file storage, chunking, embedding generation, and context injection into prompts.
Supported by:
- OpenAI Responses
- Google (Gemini)
Source code in pydantic_ai_slim/pydantic_ai/builtin_tools.py
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | |
file_store_ids
instance-attribute
The file store IDs to search through.
For OpenAI, these are the IDs of vector stores created via the OpenAI API. For Google, these are file search store names that have been uploaded and processed via the Gemini Files API.
DEPRECATED_BUILTIN_TOOLS
module-attribute
DEPRECATED_BUILTIN_TOOLS: frozenset[
type[AbstractBuiltinTool]
] = frozenset({UrlContextTool})
Set of deprecated builtin tool IDs that should not be offered in new UIs.
SUPPORTED_BUILTIN_TOOLS
module-attribute
SUPPORTED_BUILTIN_TOOLS = frozenset(
cls
for cls in (values())
if cls not in DEPRECATED_BUILTIN_TOOLS
)
Get the set of all builtin tool types (excluding deprecated tools).